Analiza danych: Jak wybrać odpowiednie testy statystyczne do pracy doktorskiej i magisterskiej?
- Karolina Dyrla-Mularczyk
- 18 sie 2024
- 4 minut(y) czytania
Zaktualizowano: 6 dni temu
Jak prawidłowo dobrać testy statystyczne do pracy magisterskiej i doktorskiej?
Jeśli piszesz swoją pracę magisterską lub doktorską, lub prowadzisz badania naukowe, to być może stoisz właśnie przed wyborem właściwych narzędzi służących analizie danych. Wybór jest bardzo istotny, bowiem odpowiednio dobrany test statystyczny pozwala na uniknięcie błędów we wnioskowaniu, a dokładna i precyzyjna analiza statystyczna pozwala na wyciągnięcie trafnych i wiarygodnych wniosków. Przy doborze testu statystycznego należy wziąć pod uwagę szereg czynników: rodzaj zmiennych, liczbę badanych grup, rozkład danych, zależność prób i wielkość prób. Jakie testy statystyczne wybrać do swojej analizy? Dowiesz się z tekstu.
1. Rodzaj zmiennych w analizie statystycznej do doktoratu i magisterki
Nominalne: Jeśli mamy do czynienia z danymi takimi jak: płeć (zmienna nominalna dychotomiczna), kolor oczu, kraj pochodzenia - wtedy sięgamy po test chi-kwadrat lub test Fishera. W wypadku zmiennej nominalnej dychotomicznej dobrym wyborem może być także test dwumianowy.
Porządkowe: Jeśli analizujemy zmienne takie jak stopień wykształcenia, poziom satysfakcji (zmienne kategoryczne o pewnej hierarchii lub uporządkowaniu), wybieramy testy rangowe, takie jak test Manna-Whitneya. Należy pamiętać, że test Manna-Whitneya jest wykorzystywany także w wypadku danych ilościowych, jest to test nieparametryczny, zatem rozkład danych nie musi być zgodny z rozkładem normalnym, służy porównywaniu mediany w dwóch niezależnych grupach (nie porównuje średniej!).
Ilościowe: Gdy analizujemy dane wyrażone na skali ilorazowej lub interwałowej, takie jak surowe wyniki testów psychologicznych, czas, dochód, poziom glukozy we krwi – stosujemy testy parametryczne (np. t-test) lub nieparametryczne (np. test Wilcoxona).
2. Wybór testu statystycznego w zależności od liczby badanych grup
2 grupy: gdy analizujemy wyniki z 2 grup stosujemy t-test dla próbek niezależnych lub sparowanych, lub nieparametryczny odpowiednik - test Manna-Whitneya.
Więcej niż 2 grupy: w takiej sytuacji sięgamy np. po test ANOVA lub test Kruskala-Wallisa (gdy porównujemy mediany, a dane nie spełniają założeń normalności rozkładu i homogeniczności wariancji).

3. Jak rozkład danych wpływa na wybór testu statystycznego do doktoratu?
Jeśli dane spełniają założenia o: normalności rozkładu, homogeniczności wariancji, niezależności obserwacji i losowości próby - wybieramy testy parametryczne (t Studenta lub Anova)
W sytuacji niespełniania założeń sięgamy po testy nieparametryczne, np. Manna-Whitneya, Kruskala-Wallisa. Pamiętamy jednak o ograniczeniach tychże testów! Jednym z nich jest mniejsza moc statystyczna, testy te mają niższą zdolność do wykrywania rzeczywistych efektów (różnic między grupami). Może to prowadzić do większego ryzyka błędu drugiego rodzaju (fałszywej akceptacji hipotezy zerowej). Testy nieparametryczne zazwyczaj nie dostarczają szacunków parametrów populacji (np. średniej czy wariancji), co ogranicza zakres informacji, jakie można uzyskać o badanej populacji. Wyniki testów nieparametrycznych mogą być trudniejsze do interpretacji, szczególnie jeśli chodzi o wielkość efektu. Często dostarczają tylko informacji o istnieniu różnic, a nie o ich wielkości czy kierunku.
Zatrzymajmy się na chwilę, przy tesćie Manna-Whitneya.
Test ten nie porównuje bezpośrednio median, choć często jest tak interpretowany. Jego głównym celem jest sprawdzenie, czy wartości w jednej grupie mają tendencję do bycia większymi (lub mniejszymi) niż w drugiej grupie, co oznacza różnice w rozkładach. Należy zatem pamiętać o dodatkowych ograniczeniach tego testu:
Jeśli rozkłady są różne pod względem kształtu (np. jedna grupa ma większą wariancję), test może wykryć różnicę, nawet jeśli mediany są równe.
Jeśli celem jest ścisłe porównanie median, lepszym podejściem może być test Hodgesa-Lehmanna dla różnicy median lub inne metody oparte na przedziałach ufności.
4. Testy statystyczne dla prób niezależnych i sparowanych w analizie danych do doktoratu
Jeśli mamy do czynienia z próbami niezależnymi - wyniki pomiarów w jednej grupie są całkowicie niezależne od wyników pomiarów w innej grupie, wybieramy t-test niezależny lub analizę ANOVA (gdy mamy więcej niż 2 próby) lub nieparametryczny test Manna-Whitneya.
Jeśli mamy do czynienia z pomiarami powtarzanymi lub próbami sparowanymi, sięgamy po t-test sparowany, analizę ANOVA (gdy mamy więcej niż 2 próby) lub nieparametryczny odpowiednik - test Wilcoxona.
5. Jak wielkość próby wpływa na wybór testu statystycznego? próby a testy statystyczne
W wypadku małych prób preferowane są testy nieparametryczne.
Jeśli mamy do czynienia z dużymi próbami - wybieramy testy parametryczne, o ile spełnione są założenia.
Uznaje się, że mała próba to próba do 30 obserwacji. Podejście to jest oparte na Centralnym Twierdzeniu Granicznym - rozkład średniej z próby będzie zbliżać się do rozkładu normalnego, gdy liczba obserwacji w próbie jest wystarczająco duża, niezależnie od rozkładu populacji. W praktyce, liczba 30 została uznana za wystarczającą, aby ten efekt był widoczny. Przy próbach większych od 30, rozkład średniej z próby jest zwykle dostatecznie bliski rozkładowi normalnemu.
Kiedy CTG może być źle interpretowane?
Liczba 30 jako magiczna granica – często mówi się, że próba „większa niż 30” wystarcza, by rozkład średnich był normalny. Jeśli populacja jest bardzo skośna lub zawiera wartości odstające, może być potrzebna znacznie większa próba. W skrajnych przypadkach (np. rozkłady o nieskończonej wariancji) CTG może nawet nie działać.
Nie dotyczy pojedynczej próby! – CTG mówi o rozkładzie średnich wielu prób, a nie o kształcie pojedynczej próby danych. Jeśli masz jedną próbę i chcesz sprawdzić jej normalność, musisz to zrobić empirycznie, a nie polegać na CTG.
Nie oznacza, że każda statystyka ma rozkład normalny – CTG dotyczy średnich z próby, ale niekoniecznie innych statystyk (np. wariancji, skośności).
Należy pamiętać, że zastosowanie odpowiednich testów statystycznych pozwala na zachowanie wysokich standardów w analizie danych i wyciąganie właściwych wniosków. Pozwala na uniknięcie błędów i zwiększa wiarygodność naszego badania.
Jeśli sen z powiek spędza Ci analiza danych do magisterki, analiza danych do doktoratu, a analiza statystyczna do dla Ciebie wciąż czarna magia, napisz do nas: